
I.. Mu I I m1eu

- 2)

0

THE IMPACT OF IEEE-1076 ON VHDL

* •THESIS

Kevin J. BerkFr Captain, USAF

* AFIT/GCE/ENG/88D-1

DTICECTEn

DEPARTMENT OF THE AIR FORCE S ot 0
AIR UNIVERSITY E

AIR FORCE INSTITUTE OF TECHNOLOGY -
0I

Wright-Patterson Air Force Base, Ohio

"-&sm-"-- ' 89 11' i7II • I~~i ,am, / 'm

AFIT/GCE/ENG/88D-1

THE IMPACT OF IEEE-1076 ON VHDL

THESIS

Kevin J. Berk
Captain, USAF

AFIT/GCE/ENG/88D-1

"17 JAN li6

Approved for public release; distribution unlimited

* AFIT/GCE/ENG/88D-1

THE IMPACT OF IEEE-1076 ON VHDL

THESIS

C

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Aosslon For

T IS i-GRA&I
DTIC TAB

Unannounced Q

Kevin J. Berk, B.S. Physics, BSEE utiitO

Captain, USAF
~Di3tribution/
Availability Codes
I Avai rnd/or

December, 1988 Ds pca

Approved for public release; distribution unlimited

Acknowledgments

I am very grateful to the many people who have helped my efforts on this

research project. I would like to especially think my thesis readers: Maj James W.

Howatt who lent his expertise in the areas of language criteria, and the UNIX utility

yacc; and Capt Bruce George who gave great words of encouragement throughout

the whole project. I am also grateful for the guidance I received from my thesis

sponsors, Dr. J. Hines and Lt N. Naclerio from the Air Force Wright Aeronautical

La-bs. To the simulator expert, Capt Douglas Pompilio, thanks for helping t'. find

errors and for suggesting corrections. To the many members of my section, GCE-

88D, who offered their friendship and words of encouragement, thanks, they came

at the right time.

I would like to thank the two individuals most responsible for the completion

of this thesis. Maj Joseph W. DeGroat, my thesis advisor, was always willing to

take time from his busy schedule to discuss my ideas and answer my questions. He

also gave me the necessary freedom and space to complete this research. Thanks for

all your help. Finally to my wifeM I could not have done it without your lovin.g

support especially during the times I felt quite discouraged. Your understanding

and encouragement made the difference and helped to keep my thesis efforts in

perspective. God Bless you always!

Kevin J. Berk

i ii

Table of Contents8

Page

Acknowledgments....................................... ii

Table of Contents.......................................iii

List of Figures. vii

List of Tables. viii

Abstract ix

1. Problem Statement 1-1

1.1 Problem 1-1

1.2 Background 1-2

1.3 Scope 1-3

1.4 Approach. 1-6

1.5 Maximum Expected Gain. 1-8

1.6 Overview of the Thesis. 1-8

11. Literature Review. 2-1

2.1 Introduction. 2-1

2.2 Automated Design Standards 2-1

2.3 The VHDL Language 2-2

2.4 Previous Research. 2-4

2.5 Language Evaluation Criteria 2-5

C ~2.6 Software Project Management 2-7

2.6.1 Code and Fix Model 2-7

Page

2.6.2 Stagewise and Waterfall Models 2-7

2.6.3 Evolutionary Development Model 2-8

2.6.4 Transform Model 2-8

2.6.5 Spiral Model 2-8

2.7 Summary 2-9

III. Management of the Project 3-1

3.1 Overview 3-1

3.2 Management of the Software Project 3-1

3.3 Management of the Version Evaluation 3-3

3.4 Summary 3-3

IV. VHDL Version Evaluation 4-1

4.1 Introduction 4-1

4.2 Find predefined criteria 4-1

4.3 Compare the two versions of VHDL 4-2

4.4 Evaluate Version Differences 4-2

4.5 Evaluation Details 4-4

4.5.1 Expressivity 4-4

4.5.2 Well-Definedness 4-5

4.5.3 Types 4-10

4.5.4 Modularity 4-11

4.5.5 10 Facilities 4-11

4.5.6 Portability 4-12

4.5.7 Efficiency 4-12

4.5.8 Pedagogy 4-14

4.5.9 Generality 4-15

4.6 Conclusion 4-17

4.7 Summary 4-17

iv

p=

Page

V. Analyzer Conversion-Extension 5-1

5.1 Introduction 5-1

5.2 Revise and extend the current analyzer 5-1

5.3 Conversion-Extension Steps 5-3

5.4 Conversion Example 5-5

5.5 Summary 5-12

VI. Testing and Analysis 6-1

6.1 Introduction 6-1

6.2 Testing Tasks 6-1

6.2.1 Develop or obtain a validation test suite for the

analyzer 6-1

6.2.2 Validate the changes and extensions 6-2

6.2.3 Perform analyzer-simulator integration tests 6-2

6.2.4 Document the Results 6-2

6.3 Requirements 6-2

6.4 How the Requirements Were Met 6-3

6.5 Testing Process 6-4

6.6 Summary 6-8

VII. Conclusions and Recommendations 7-1

7.1 Introduction 7-1

7.2 Conclusions 7-1

7.2.1 Evaluation 7-1

7.2.2 Conversion/Extension 7-2

7.3 Recommendations for Future Research 7-3

7.3.1 Continue to Study the Language 7-3

7.3.2 Complete Implementation of the Language . 7-3

V

Page

0 ~7.3.3 Design Library Implementation 7-3

7.3.4 Subset of VHDL. 7-3

7.4 Summary. 7-4

0 Bibliography BIB-i

Vita. VITA-i

0

C

c vi

07

List of Figures

Figure Page

05.1. Analyzer Design 5-2

5.2. Version 7.2 Subprogram BNF 5-7

5.3. IEEE-1076 Subprogram BNF 5-7

5.4. Version 7.2 yacc file. 5-9

5.5. IEEE-1076 yacc file. 5-10

0

vii

List of Tables

Table Page

6.1. Results of Test Suite Testing 6-6

6.2. Portability Tests 6-7

viii

AFIT/GCE/ENG/88D-1

Abstract

This paper describes the conversion and extension of the Air Force Institute

of Technology's (AFIT's) UNIX-based VHDL Analyzer. This task concentrated on

converting the current AFIT analyzer from VHDL Version 7.2 to IEEE Standard

1076-1987 and extending it to include the wait statement and component instanti-

ation as defined in IEEE Standard 1076. An evaluation was also performed on the

differences between Version 7.2 and IEEE Standard 1076-1987 using nine predefined

criteria that determine if a programming language is good. The evaluation was done

to determine if IEEE Standard 1076-1987 was indeed a better version of VHDL than

its predecessor, Version 7.2. Results from validation testing showed that the IEEE-

1076 analyzer implements 60 to 70% of IEEE Standard 1076 and efficiently used

computer resources.

ix

THE IMPACT OF IEEE-1076 ON VHDL

I. Problem Statement

1.1 Problem

The IEEE has recently approved a new standard, IEEE Standard 1076-1987

[IEEE88] (which will be referred to hereafter as IEEE-1076), for the Very High

Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL). IEEE-

1076 differs from the previous revision of VHDL, Version 7.2 [Inte85l. The set of

changes and additions contained in IEEE-1076 appear to be better, but have not been

subjected to any evaluation to determine if IEEE-1076 is indeed a better version of

VHDL. To gain knowledge about VHDL and determine the impact of IEEE-1076

in the UNIX1 environment, the two versions of VHDL need to be evaluated using

criteria (which will be defined in Chapter 2) and aided by converting a current

VHDL analyzer (which syntactically and semantically analyzes VHDL source code

and outputs the semantic information in an intermediate form) to th- TEEE-1076

standard.

'UNIX is a trademark of AT&T.

1-1

1.2 Background

Because many incompatible hardware description languages (HDLs) exist, the

Department of Defense (DoD), to promote VHSIC technology transfer, in 1985 es-

tablished a standard, the Very High Speed Integrated Circuits (VHSIC) Hardware

Description Language (VHDL) (Dewe86:12] [Int84a:9-1]. A VMS [Deit84:507-508]

* operating system-based tool kit. including an analyzer [Int84a]. was delivered with

the DoD standard. Concurrently, however, the Air Force Wright Aeronautical Lab-

oratories (AF\VAL) and the Air Force Institute of Technology (AFIT) felt that to
* S

en-ourage universities to perform VIIDL research a UNIX-based tool set should be

made available to them at little or no cost. This tool set became known as the AFIT

SVIIDL Environment (AVE) CartS7:31. Consequently, in 1986. Capt Frauenfelder.

an AFIT student. developed a prototype UNIX-based VHDL analyzer [Frau86]. This

product was expanded in 1987 by another AFIT student, Capt Bratton. into a sub-

set analyzer [BratS7:6.21 that incorporated 75% of VHDL Version 7.2 [Inte85]. the

current version of VIDL at the time for the DoD.

Dlring the development of VtIDL. representatives from government, industry, •

and ,acatemnia partiipate i n the rev tew process. Improvements were :uggested by

the participa ints, ai;iv of w hich were incorporated into the VII)L languago. Since

!he titia Iil t)t this h'volopmen t. Version 7.2. received a favorable response

\ vlu,,,2i:-27'. b E, Il1.1 began the process of creating an indistrv-wite Vtl) L

atu~lar,] ,itu,~ Versio 7.2 as a baseline. The result of the stantdarlization effort of S

1-2

VHDL was IEEE Standard 1076, a new industry-wide standard for VHDL. Since

IEEE-1076 has been recently published (March 1988) and contains many changes

and additions to the baseline Version 7.2, no evaluation using any predefined criteria

has been performed to determine if the new standard is actually better than Version

7.2.

1.3 Scope

The goal of this project was to determine if IEEE-1076 is a better version of

VHDL by evaluating the changes and additions to Version 7.2. This was done in

conjunction with converting a UNIX-based Version 7.2 analyzer to an IEEE-1076

VHDL analyzer.

More precisely, the goals required evaluation criteria that were predefined, and

an existing VHDL Version 7.2 analyzer that incorporated either a subset of VHDL

Version 7.2 or the whole language.

The criteria used for the evaluations should be defined prior to use so as to

* keep the evaluator's bias to a minimum. The criteria should also have been used in

previous evaluations and have an established and proven record.

The analyzer should be a UNIX-based analyzer implementing the whole lan-

guage or a subset thereof. Bratton's analyzer was an ideal starting point. He was

able to implement 75% of Version 7.2 [BratST:6.21 which provided a basis for compar-

ison of a subset of VHDL. While Bratton's analyzer was being revised the differences

1-3 OS

between version 7.2 and IEEE-1076 were studied to determine whether they added

to or detracted from the language as a whole. Revising and extending an analyzer

aided in studying the new constructs in detail because both the old and new had to

be learned in order to compare them.

Many of the same requirements that Bratton imposed [Brat87:1.7] on the ana-

* lyzer project are still applicable for this project. The purpose of the analyzer remains

the same: it is to check the source code input for correct syntax and semantics and

output the semantic information in a machine readable form.

The IEEE-1076 analyzer will also retain the qualities of generalization, relia-

bility, maintainability, and economy as applied to the analyzer project by Bratton

0 [Brat87:1.7-1.111. They are reviewed briefly below.

Generalization means that the analyzer must be UNIX-based and be able to

* use the tools that are common to that operating system such as lex [Lesk78I, yacc

[John78] and the programming language C [Kern78, Kern88l. The analyzer must

also be portable; be able to operate on several different computer configurations.

The analyzer must also handle correct and incorrect input without "crashing".

For the analyzer to be reliable, it must pass a comprehensive set of tests with

*and without the other tools of the AVE.

To be maintainable the analyzer must be well documented, and designed in a

structured and modular fashion.

1-4

0 am

To be economical, the analyzer should be efficient when analyzing designs.

Bratton's goal was "1000 lines of source code per CPU minute on an unloaded VAX

11/780 running bsd 4.2" [Brat87:1.11]. Main memory should also be conserved with

a goal of 640K of main memory for any design and 100 bytes of VIA output for each

input statement [Brat87:1.11].

Since the focus of this project was to determine if the IEEE-1076 is a better

version of VHDL than Version 7.2, extensions to the converted analyzer were limited

to adding the wait statement and the new definition (non-primative) for component

instantiation.

The wait statement enhances the simulation capability of the language [Nash86:59]

0 and eases the burden on the user to design the same capability without the wait state-

ment. The wait statement replaces several statements in order to perform the same

function.

Component instantiation was chosen because of its "nested hierarchy of block

statements" [CLSI87:11-3]. It allows many levels of components to be instantiated

making for a more hierarchical design.

The following related subjects however, were not included in the scope.

0 Incorporation of the whole language was not part of the scope of this project

since the focus was on the comparison between Version 7.2 and IEEE-1076. The

4l conversion of the analyzer from Version 7.2 to IEEE-1076 aided in performing this

evaluation.

1-5
Il

Optimization of the VHDL Intermediate Access (VIA) was not included in the

scope of this project either. Since work was concurrently being performed on the

AVE simulator (Pomp88], it was crucial to the success of both projects to maintain

the VIA in its stablest form. Changes were made to the VIA only to accommodate

changes in the language definition.

1.4 Approach

To meet the requirements of the language evaluation and the analyzer conver-

9 sion and extension, the following tasks had to be performed.

1. Find predefined criteria. As mentioned in the scope, it is necessary to use

predefined criteria to perform the evaluation to try to minimize the evaluator's

bias and to prevent the shaping of criteria to meet the results of the evaluation.

* The criteria description is presented in Chapter 2.

2. Compare the two versions of VHDL. This task was composed of two parts.

The first was to evaluate the changes and additions of IEEE-1076 against the
I.

criteria, and the second part was to determine what constructs needed to be

changed both syntactically and semantically.

3. Revise and extend the current analyzer. After the differences were determined,

the analyzer was changed to syntactically accept the full IEEE-1076 language.

The subset of the language that was semantically analyzed was extended to

add the wait statement and the new definition of component instantiation.

1-6(

4. Develop or obtain a validation test suite for the analyzer. The Intermetrics

VHDL analyzer test suite [Int84b] was converted to IEEE-1076 by Steve Grout

a subscriber to the VHDL repository. The converted test suite is available from

the VHDL repository.2 This test suite covered most of the IEEE-1076 language.

Test cases were developed to test the areas not covered by this test suite.

5. Validate the changes and extensions. The changes and extensions were vali-

dated using the test suite previously described. Regression testing was per-

formed after each change or set of changes were implemented to ensure thate
no other constructs were inadvertently changed or affected. The results of the

validation are presented in Chapter 6.

6. Perform analyzer-simulator integration tests. The AVE simulator fPomp88]

was being converted to handle IEEE-1076 designs at the same time as the

analyzer was being converted. At several points during the analyzer conversion,

integration tests were performed to show end-to-end results. A circuit could

be modeled in a mix of Version 7.2 and the new IEEE-1076 and be simulated

in this intermediate configuration.

7. Document the results. This thesis contains the decisions and conclusions of this

project.

2 The arpanet address of the VHDL repository is WSMR-SIMTEL20.ARMY.MIL

Ci

1-7
C

1.5 Maximum Expected Gain

If this country is to stay technologically competitive in integrated circuitry,

VHSIC research needs to be performed both in industry and in universities. Under-

standing the differences between Version 7.2 and IEEE-1076 when based on prede-

fined criteria is important to understand the direction that the language has taken.

Future changes to the language can be better made in light of this evaluation. A

UNIX-based (the de facto university standard) IEEE-1076 Analyzer will help to fur-

ther VHDL research and VHSIC technology insertion into the academic community.

1.6 Overview of the Thesis

This thesis is presented in seven chapters. Chapter 2 shows the results of

a literature review of past and ongoing VHDL research. Chapter 3 describes the

management of the project, Chapter 4 presents the language evaluation, and Chapter

5 shows the analyzer conversion and extension. Thesis validation will be discussed

in chapter 6. The findings and conclusions along with recommendations for future

research efforts will be presented in chapter 7.

1-8

II. Literature Review

.1 Introduction

As stated in Chapter 1, the primary goal of this thesis was to determine if IEEE-

1076 is better than Version 7.2 for defining VHDL. This was aided by converting an

existing analyzer from Version 7.2 to IEEE-1076. The revised analyzer syntactically

and semantically checks the VHDL code written in accordance with IEEE Standard

1076 and outputs the results in an intermediate form. The intermediate form is

then used by other tools of the AFIT VHDL Environment (AVE) [DGr88] for such

activities as simulation. By using VHDL, chip and circuit designers can describe

their designs in software and have a computer analyze and simulate them before

actual fabrication.

This literature review will concentrate on the areas that pertain to this thesis:

standardization of hardware description languages (HDLs), VHDL, and previous re-

search into VHDL analyzers to provide a brief history and background. Also covered

are programming language evaluation criteria and software project management for

both software maintenance and new software development.

2.2 Automated Design Standards

Since many innovations are being developed in automated design (which in-

clude HDLs), it is difficult to communicate and transport designs within and es-

2-1

pecially between companies. International corporations face even more difficulties

transporting designs across national boundaries [Radk88:48-49]. The academic com-

munity, government, industry are all motivated to standardize automated design.

Students would be able to spend time on learning material rather than on learn-

ing different tool formats and be better prepared for industry when they graduate.

The government needs clear specifications for its contracts. Vendors can become

more competitive with each other, keeping prices lower, and buyers will have to bear

less risk from a single supplier going out of business. Designs can be reused when

upgrading tools.

"Without structure to a problem definition, we have total anarchy and huge

0 inefficiencies" [Radk88:531. Standards are available even if only de facto and they

need to be used and worked on so that improvements can be made to them. Stan-

dards are needed by customers and vendors even at the risk of restricting innovation
0

slightly in the short run (Radk88:55].

2.3 The VHDL Language

The need to design and implement VHSIC technology for military systems

was a major incentive in the development of VHDL. "Moreover, VHDL will improve

documentation and decrease design time and cost for government electronic systems"

[Dewe86:12].

2-2

To determine the requirements for VHDL, many HDLs were analyzed by the

Institute for Defense Analysis in 1981 to determine and make use of the HDL's

advantages [Aylo86:17]. The major features selected were:

scope of the hardware, management of the design, timing description,
architectural description, description of a design's interface, descriptions
of a design's environment and language extensibility [Aylo86:18].

Some features such as language extensibility are not supported in VHDL. Syn-

tactic and semantic extensions cannot be made to VHDL. [Aylo86:26].

The VHDL language is not limited to any one technology such as CMOS or

bipolar but is technology independent. It is a flexible tool able to describe various

levels of abstraction from an overall system down to "the logic gate level" [Lips86:28].

In 1983, Intermetrics was awarded a contract to develop a VHDL tool set for

the U.S. Air Force [ASD83]. The tool set was developed under the VMS operating

system. Since the academic community primarily operates its computer resources

under the UNIX operating system, the Intermetrics toolset is not available for re-

search and classroom support computers. The AFIT VHDL Environment (AVE),

which includes both an analyzer and a simulator, was developed in response to this

situation [Cart87].

Recently though, the IEEE has developed an international VHDL standard,

IEEE-1076 as stated in Chapter 1.

2-3

.J

1-4 Previous Research

Building a VHDL analyzer has been the topic of two previous theses at AFIT.

In 1986, Capt Frauenfelder developed a UNIX-based prototype analyzer (Frau86],

implemented in the C language, that incorporated a subset of VHDL Version 7.2

[Inte85]. Capt Frauenfelder's prototype analyzer was able to process "over 1/3 of

the VHDL productions" [Frau86:5.14].

Capt Bratton continued the research effort on the prototype analyzer at AFIT.

His objective was to build a "production quality" analyzer [Brat87] for which he

defined the production quality requirements and then tested the analyzer to show

that the requirements were met. Bratton's efforts were also devoted to developing a

new and more efficient VHDL Intermediate Access (VIA). He was able to implement

75% of Version 7.2 (Brat87:6.2].

Research into analyzing VHDL is also being performed at other universities in

this country. L.A. Mears and S.P. Levitan at the University of Pittsburgh, are re-

searching capture and simulation tools [Mear88]. Their efforts also include a compiler

that takes the VHDL input and outputs an intermediate form which is a flattened

circuit description in a text file. The compiler itself was built using the UNIX util-

* ities lex [Lesk78] and yacc [John78]. The design of the compiler is based on Capt

Frauenfelder's prototype analyzer (Frau861 and the Sample C compiler [Schr85]

At the University of Cincinnati, under the direction of Dr. Harold Carter,

analyzer research is being done in the UNIX environment. While an analyzer is

2-4
C

being built by one of his students, research efforts are also being performed in other

areas of VHDL such as synthesis behavioral structure semantics and simulation in

the high-speed parallel environment [Cart88].

VHDL is not only being studied in the research labs, but is making its way into

the classroom. The University of Virginia is now offering a design course in VHDL

at the undergraduate level, one of the first in the country [Weis88:51].

2.5 Language Evaluation Criteria

In order to perform a fair evaluation of the changes and additions to VHDL,

criteria needed to be found or developed and predefined. High order language crite-

ria development had not been formalized until the Ada language was being defined

by the DoD in the late 1970's. The STEELMAN document [STEE78] contains the

technical requirements or criteria that a high order language should meet. This

document contained very detailed requirements. Tucker subsequently distilled these

requirements down to nine more general requirements or criteria that a good pro-

gramming language should have [Tuck86:10]. The nine criteria determined by Tucker

are: expressivity, well-definedness, data types and structures, modularity, 1O facili-

ties, portability, efficiency, pedagogy, and generality. The definitions of each follow.

Expressivity is defined as the expressiveness of the language, or the clarity of

the meaning intended by the programmer. It is also defined as the compactness of the

'Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

2-5
-d

program and how well the language encourages structured forms of programming.

Uniformity of the meaning of the symbols that are used throughout the program is

also a factor in determining expressivity.

Well-definedness indicates to what degree the syntax and semantics are free of

ambiguity, are consistent and complete throughout the language. It also indicates

how well the behavior of the language can be predicted before it is used.

The Data Types and Structures criterion determines if the language supports

a variety of types, nonelementary collections of types (records), and dynamic data

structures; those declared "on the fly".

Modularity is defined in two parts: the ability to support subprogramming,

and extensibility of the language allowing the programmer to define operators and

data types.

The 10 Facilities criterion refers to support for sequential, indexed, and random

access to disk files.

Portability simply refers to how machine-independent the language is defined.

The Efficiency criterion looks at how fast a program compiles and how easy it

is for a programmer to develop a program.

Pedagogy is defined as the ease of teaching and learning a language. Well-

written documentation and non-confusing constructs of a language are desired.

2-6

Generality refers to the range of programming applications for which the lan-

guage is well-suited.

If a programming language, whether targeted for software or hardware, favor-

ably meets all of the above criteria, then the language is considered good. Further

discussion and use of these criteria will be presented in Chapter 4.

2.6 Software Project Management

There are many software development methodologies available to use for both

software maintenance and enhancement. Several models were considered for use on

the project. Five models are presented.

2.6.1 Code and Fix Model This model was very basic only containing two

steps: write some code and fix any problems in the code. This was done iteratively

until the code performed in the prescribed manner (Boeh88:61].

2.6.2 Stagewise and Waterfall Models The stagewise model determined that

"software be developed in successive stages (operational plan, operational specifica-

tions, coding specifications, coding, parameter testing, assembly testing, shakedown,

system evaluation)." [Boeh88:63]. The waterfall model expanded on it to add feed-

back loops to the previous stage and rapid prototyping during the requirements

phase.

2-7

2.6.3 Evolutionary Dt elopincrnt Mode! Tis model starts with a quick op-

erational prograril and builds on it as the requirements evolve. It is used when the

requirements are not known and the user does not quite know how to specify the

requlirements [Boeh88].

2.6.4 Trans;formn .Aodel This model automatically transforms a specification

into code. Tins is uised when tile specification is known and understood upfront. and

autom-atic tools are availahble to perform the transform [Boeh8S].

,2.6'.5 . pir! .AIo(The spiral niodel is a flexible model. It can accommodate

miost othler models ncuigthe aforementioned. This spiral model breaks the effort

* liii ut smaller pieces (or sprl.each piece b~eing completed before starting the next

iLtloelSS1- A spiral is miake up of of inany cycles (the number is arbitrary and usuially

(leteri"inedl by thle Complexity of the p~roject). Each cycle undergoes about four

dlist inct steps. The first is to define thle objectives of the product (or a particular

part of thei product) being dleveloped, the alternate mneans of implementation andl any\

* ~conist rainuts inposedl. The secondi step Identifies areas that could pose significant risk

t tII prI, iji it (ce t Ive r Isk IS I(uI(en t Ifie d t Ilie t, III I step dletermi nes the strt(V to

III, ,lehi I. 'l [is couild take iiiliV differeint formus Incluiding rapid proltypmig.

fuuuliriariiu. iio~eliug.c. Once the risks are resolved tOw product for tOils cYcle

IdevelopeJd aiid(veritied. 'lhue laust stepi Involves laning for t lie niext spiral anl enlds

*I it a4eiwo lile just-completed cyc-(le.

*2 S

* 2.7 Summary

This chapter presented a brief overview of design automation standardization,

the VHDL language, previous research, language comparison, and software manage-

ment models. The following chapters will show how the previous research has been

used to aid in evaluating the impact of changing from Version 7.2 to IEEE-1076 using

the described criteria. It will also provide the overall system design alternatives and

decisions for converting and extending the existing analyzer.

0 6

2-9
0 S

III. Management of the Project

* 3.1 Overview

This chapter describes the overall management of the project to solve the thesis

problem as stated in Chapter 1. The software project management models that were

presented in Chapter 2 will be briefly discussed and compared in order to choose one

to use on the project.

3.2 Management of the Software Project

All software projects need to be planned and properly managed to decrease

the risk of failure. Several models for software project management are available for

use, some of which were described in Chapter 2. Further discussion of these models

* follows.

The Code and Fix Model is inappropriate to use since it does not follow an

overall design, but rather builds around whatever happens to exist or was started inS
the beginning of the project. The results are poorly structured code and expensive

subsequent fixes [Boeh88:62]. This model will not work for management of this

project since the overall design is known and already modular.

The Stagewise and Waterfall Models have been the most popular and are re-

quired for DoD contracts [DoD88:10]. Even though the model provides for feedback

to the preceding step, errors that creep into the project in the beginning, that are

3-1
Se

not detected in the succeeding step, propagate into the later stages of the project

where they are more difficult and more expensive to fix. For this reason, this model

was rejected for use.

The Evolutionary Development Model is useful when the requirements for the

project are not well-known. The user may not know what the final product should

be like until it is seen. In this project, however, the requirements are well-known

and not subject to change during the life of the project. This model was rejected.

The Transform Model which automatically transforms a specification into code

would be very useful, but the tools do not exist to perform the transformation for

this project except for the UNIX utilities which build the lexical analyzer and the

parser. This method was rejected for managing the whole project.

The Spiral Model, however, provides a flexible and user customizable model. It

emphasizes that the risks of the project be defined prior to continuation. Errors are

more easily caught in the beginning phases because of the highlighting of the risks.

The number of "spirals" is not limited, but can contain as many as needed. This

insures that the project is divided intu small definable pieces and that each risk is

resolved before moving on in the project. This model was chosen for the project also

because it is flexible enough to be used on a maintenance type project (conversion of

the Version 7.2 analyzer to an IEEE-1076 analyzer) and new development (extending

the capability of the converted analyzer). The specific steps of how the spiral model

was used can be found in chapter 5.

3-2

..S., m ~ aa~ m mlml~lm a p lii illm am

3.3 Management of the Version Evaluation

Management of the evaluation was actually a simplified version of the spiral

model. Since this was mostly a side-by-side comparison of documents with some

experience from the analyzer, there was very low risk in performing the analysis.

Also, the possibility of errors propagating into the next phase was not a problem.

The evaluation was managed and performed independently of the conversion-

extension of the analyzer. The evaluation was not tied to any "milestones" of any

schedule, or to any of the specific steps of the analyzer conversion-extension. How-

ever, the two tasks mutually aided each other and in reality were performed in

parallel.

3.4 Summary

The overall management of the project was discussed in this chapter forming

the framework of how the actual work was accomplished for both the version evalu-

ation and the software portion (the analyzer conversion-extension). Chapters 4 and

5 detail the specific design and steps used within this management framework.

3-3

IV. VHDL Version Evaluation

4.1 Introduction

This chapter presents the details of the two tasks presented in Chapter 1:

find predefined criteria and compare the two version of VHDL. First the criteria is

determined and then the documents used for the evaluation are identified. Next, the

specific steps used to perform the evaluation are enumerated and described followed

by the actual results of the evaluation.

4.2 Find predefined criteria.

In order to perform an evaluation of programming languages that is as unbiased

as possible, criteria are needed that are defined before the actual evaluation takes

place. Hopefully these criteria which are already defined, are also applicable for the

specific evaluation, and have been used successfully in a previous evaluation.

The STEELMAN document [STEE78], one of several in a series written while

Ada was being developed, contained very specific and detailed requirements that the

DoD standard language should meet. Several languages were evaluated against the

criteria to determine if any were suitable to become the DOD's standard language.

The criteria in the STEELMAN document were too numerous and detailed to

use on this project. However, they served as a basis for evaluations and comparisons

of several general purpose programming languages [Tuck86:10-121. Tucker distilled

4-1

the STEELMAN requirements down to nine criteria that he used to "determine if a

computer programming language was good." [Tuck86:10]. These nine criteria were

described in Chapter 2.

Tucker's nine criteria were chosen to be used in this project. They are pre-

defined and have been used to make several comparisons. These criteria were at

a level high enough to allow differentiation between programming languages (or in

this project's case, versions) and broad enough to cover the whole breadth of the

programming language capabilities. The STEELMAN criteria would have caused

the project to be bogged down in minute detail, which was not within the scope of

the project.

4.9 Compare the two versions of VHDL.

Three documents were used for this evaluation: The VHDL Language Re-

finement Rationale [CLSI87], the VHDL Language Reference Manual Version 7.2

[Inte85], and the IEEE Standard VHDL Language Reference Manual [IEEE88I. The

results of this evaluation can be found later in this chapter.

4.4 Evaluate Version Differences

Several steps were followed to perform the version difference evaluation. The

steps are shown below:

1. Determine or define criteria.

4-2

2. Determine differences both syntactic and semantic.

3. Match the differences to one or more criteria.

4. Determine whether the effect of the change enhances or detracts.

5. Document the results.

1. Determine or define criteria. The criteria was chosen earlier in this chapter

and is described in Chapter 2. This step was performed only once while steps two

through five were performed iteratively.

2. Determine differences, both syntactic and semantic. The differences were

determined in a very straight-forward manner. The Version 7.2 LRM and the IEEE-

1076 LRM were compared in a side-by-side comparison. The Language Refinement

Rationale was also heavily consulted for each difference detected.

3. Match the difference to one or more criteria. After the difference was

detected, it was matched against the criteria to determine if it would fit under one

or more of the criteria. The evaluator's opinion pla" d a part in this step, but was

minimized since the criteria were predefined and there was very little overlap among

the criteria.

4. Determine whether the effect of the change enhances or detracts. This was

a relatively easy task. Changes to a language are usually made to the betterment of

the language, but since IEEE-1076 was designed by committee this was felt to be a

4-3

necessary step. Each difference was weighed against the definition of the particular

criterion to determine whether it added to or detracted from the VHDL language.

5. Document the results. The detailed results are documented below.

4.5 Evaluation Details

The following are the detailed results of the differences between Version 7.2

and IEEE-1076 to determine if IEEE-1076 is indeed a better version of VHDL. The

results are presented per criteria as described in Chapter 2.

4.5.1 Expressivity The expressivity of VHDL was enhanced by several

changes and additions in IEEE-1076.

* The new design entity concept is simpler and hence makes the language more

expressive from a programmer's view point. "A design entity is defined by an

entity declaration together with a corresponding architecture body" [IEEE88:1-

1] instead of all of the corresponding architectures using the entity as defined in

Version 7.2. The design hierarchy changed from one of design entities to that of

blocks. Blocks now represent the design hierarchy and design entities represent

source code hierarchy. This new design concept increases the structuredness

of the program.

* Signal declarations are now allowed in packages so they can be global. Import

directives were deleted as a result of the global signal declarations, making the

language more compact.

4-4

-- n ow

* The alias declaration was clarified. It is now an alternate name for an object,

not another object.

* IEEE-1076 clarifies labels by allowing both indexed labels and label declara-

tions. This will allow differentiation between generated statements. Indexed

labels provide unique names for instances of components or blocks.

* The nand and nor operations are not associative by definition. The the change

to the IEEE-1076 expression syntax corrected this.

Conclusion:

IEEE-1076 is more expressive than Version 7.2. All of the above differences

have a positive impact on VHDL.

4.5.2 Well-Definedness Several changes were made to VHDL to further

define the language and eliminate some confusions.

" The new design entities enhance the definition of VHDL by making the syntax

and semantics more consistent. "Blocks, entities, and architectures now all

have header, declarative parts, and statement parts" [CLSI87.1-21. The syntax

for declaring ports and generics is also common. A conceptual change in the

design hierarchy was made to VHDL; a design entity is defined as only one

architecture and one entity declaration.

" The keyword begin is now used by entities, architectures, and blocks to main-

tain syntax consistency.

4-5

" Generic and port lists are more consistently used. They appear in the same

order in entity declarations, blocks, component declarations and instantiations,

and binding indications.

" The syntax for configuration declarations was changed to differentiate between

configurations for blocks and components. Previously, configuration body dec-

larations could be confused with configuration specifications.

" IEEE-1076 specifies minimum ranges for the integer, floating point, and phys-

ical type Time types for a more complete definition of these types.

" The atomic type was removed from IEEE-1076 since it was asymmetric in

Version 7.2. A composite signal had to be assigned as a whole while its subele-

ments were allowed to be read independently.

" Composite types are redefined in IEEE-1076 as a collection of scalar types vice

the Version 7.2 delfnition which allowed collections of atomic types or the

atomic objects themselves.

* A constrained array type is defined in IEEE-1076 by using an anonymous base

type as Ada does so types can be cleanly defined.

" The matching elements concept as defined by IEEE-1076 was included to help

clarify correspondences "between arrays, in associations, aliases, array con-

versions, and logical and relational operations" (CLSI87:5-8]. This allows the

passing of actual parameters with the same size but different bounds.

4-6

" Default values are now defined to support deterministic simulation. They are

used when signals are not explicitly defined.

" IEEE-1076 uses the reserved word bus and a resolution function to resolve bus

signals.

" Two signal kinds were defined and added to IEEE-1076: buses and registers.

" The syntax for component declarations is more consistent with that of blocks

and entities. Default expressions are allowed on IN ports, and extra syntax

(semicolon) was added after port and generic clauses.

" The declarative parts of VHDL were redefined so that IEEE-1076 was more

orthogonal; separate concerns are defined separately.

" Specification syntax is more consistent in IEEE-1076 than in Version 7.2. Each

specification has a unique reserved word, "the name of the items specified, (or

others or all), a colon, the type, entity class, or component type of the items,

a delimiting reserved word, and the information associated with the item."

[CLSI87:7-41.

" Physical type operations are more explicitly defined. The physical type opera-

tions for the underlying integer computations have a clearer relation with the

range limits and precision of a particular implementation.

" Mixed type arithmetic operations were changed due to overloading and name-

hiding rules. Exponentiation can be performed by predefined Integer only, im

4-7

and mixed physical and integer operations must specify type Integer, not just

any integer type.

" Local static, global static, and dynamic expressions are defined making the

classification of expressions clearer.

* Aggregates can now be the target of a signal or variable statement. In Version

7.2, an aggregate could be assigned to a composite object but a composite

object could not be assigned to an aggregate. This resulted in an asymmetric

situation.

" Signal assignment now has no multiple-signal target, only a single name or an

aggregate is allowed. Version 7.2 confusingly implied that the multiple targets

were tied together.

" The ":=" of the loop statement was changed to in to match the syntax of

generate statement. The loop and generate statements are similar in function.

" The block syntax was changed to follow the new concept of design entities.

The Guard function also changed so that only blocks that contained a guard

expression were guarded.

" The concurrent signal assignment statement syntax was changed to match the

sequential signal assignment statement syntax. The reserved word memoried

was changed to guard for clarity.

" Component instantiation statement syntactic changes followed those in blocks

and entities for consistency.

4-8

" The scope rules were redefined to better define control and visibility. Entities

and architectures are one declarative region and the scope of blocks extend

into a block configuration.

* The use clause has been better defined (made selective) to allow finer con-

trol over which names can be made directly visible by allowing them in the

declarative regions.

" The definition of design units was simplified into a more logical grouping. In-

terface declarations were renamed as entity declarations and architecture body

declarations were renamed as architecture declarations. The number of design

units were decreased from 6 in Version 7.2 to 4 in IEEE-1076. Subprograms

are no longer design units. Configuration body declarations were also changed

since there was confusion in Version 7.2 between configuration bodies and ar-

chitecture bodies.

o The use clause is now selective and distributive. The with clause of Version 7.2

was removed since the use clause now contains the with clause functions. The

syntax was simplified by removing the reserved words procedure, function,

and package since they added nothing to the understanding of the construct

and duplicate design unit names are not allowed.

* Elaboration of all declarations and statements are defined in detail in an effort

to alleviate the confusion and complexity which resulted from not specifying

the elaboration in Version 7.2.

4-9

II

9 The predefined attributes 'Stable and 'Quiet were redefined to sense delta-

length pulses or oscillations. Version 7.2's definition could not detect them.

Conclusion:

This criterion showed the most improvement by far. The syntax of IEEE-1076

is much more consistent than that of Version 7.2. All of the above differences have

a positive impact on VHDL.

4.5.3 Types Several new types were added to IEEE-!076.

" Version 7.2 allowed a variety of data types. but did not support dynamic data

structures. IEEE-1076 adds the access type which provides for dynamic data

structures. Trees, stacks, and queues can now be abstractly supported.

" The file type was added to ease the communication with external files.

" Null arrays were added.

" Numeric (real to integer) aiid array type conversions (array to array of similar

types) were added. Type conversions were difficult or impossible to do in

C-, 7S I I , 1 ,71..

FIEFlL - 107i P- impro\eld over \eision 7.2 ii1 this cat()orv bv the addi ioi of tiew

, zdibiit i,>.. \II 4in The abov, ,lilereices have a positive impact on VIIDL. S

4-l{

* 0 i i I I I l[

4.5.4 Modularity The modularity of VHDL has been enhanced by several

changes.

" Subprograms are allowed in any declarative region putting them closer to where

they are actually used. Previously they were only allowed in packages.

* Separate subprogram declarations and bodies isolate each from the other al-

lowing indirect recursion. However, bodies of subprogram declarations must

be in the body of the package in which it is declared.

" Subprogram and predefined operator overloading now allows the user to rede-

fine objects which provides for more extensibility of the language.

Conclusion:

Only three changes were made under this criterion, but they were all positive.

Even though subprogramming itself wasn't changed, the added flexibility of where

subprograms can be placed added to the modularity part of the criterion. All of the

above differences have a positive impact on VHDL.

4.5.5 10 Facilities VHDL version 7.2 did not support any general I/O ca-

pability in its environment, but IEEE-1076 does with the addition of File 10.

* File 10 however, is restricted to sequential files to avoid sneak paths between

internal processes. The mode of a file is restricted to either in or out. Four
o

operations are supported: Read, Write, Empty, and Full.

4-11
S

" Internal files process inter-process communications and allows modeling of a

fixed size queue.

" IEEE-1076 provides package TextIO for formatting text File 10.

Conclusion:

Since Version 7.2 did not support any I/O, adding File I/O even even though

it is restricted to sequential files, is an improvement to VHDL. All of the above

differences have a positive impact on VHDL.

4.5.6 Portability At least two decisions on whether or not to include certain

constructs were based on portability.

" In order to maintain portability, IEEE-1076 does not specify how real numbers

should be rounded since this is hardware dependent. The rounding direction

on some hardware is unknown or undeterministic.

" Design library redefinition enhances portability. A non-hierarchical library can

be more easily supported by more computers than a hierarchical library. It can

also support multiple parts libraries from different vendors.

Conclusion:

Both of the above differences have a positive impact on VHDL.

4.5.7 Efficiency The efficiency of VHDL is improved in IEEE-1076. Several

changes enhance the ability of large circuits to be designed by teams.

4-12

" Packages now have separate declarations and bodies to ease the task of team

design and ease the development of programs.

" IEEE-1076 also allows a package declaration by itself so that code written in

another language can be used (or reused) as the package body.

" There is no longer a need to explicitly declare a subtype since subtype indica-

tions are allowed in the interfaces.

" The addition of the concurrent procedure call statement was added to make

timing checks easier.

" Nonstructural, multiple libraries are allowed in IEEE-1076 allowing faster ac-

cess.

" Revisions of a design library are no longer supported. They reflected analy-

sis numbers not hardware revision numbers. They were also inconvenient to

change in the source code.

* The attributes 'LeftOf and 'RightOf were added for symmetry for dynamic

subranges and unconstrained arrays. The attribute 'Reverse-Range allows the

stepping backwards through a range. The user now does not need to provide

these capabilities.

Conclusion:

VHDL's efficiency has improved in IEEE-1076. Large designs are more easily

divided with the introduction of separate package declarations and bodies. Design

4-13

library access should be faster in a nonstructural library. All of the above differences

have a positive impact on VHDL.

4.5.8 Pedagogy Several changes were made to the language which directly

and indirectly affected the pedagogy of the VHDL language.

" Several changes were made to make the syntax consistent throughout the lan-

guage. A language is easier to teach and learn if the syntax is consistent

throughout the language.

" The LRM is written in a hierarchical manner with a few examples of how the

constructs should be used.

" The import and select directives of 7.2 were removed because they compli-

cated the scope rules and semantics of default configurations respectively.

o Subprograms are no longer design units since hardware design units are primary

in VHDL. Subprograms are considered software design units. This presents less

confusion in the hierarchy of hardware design.

" Attributes are now explicitly associated with their items and are no longer

inherited from objects of a certain class.

" Removal of enable and disable statements help the ease of learning the lan-

guage. They were difficult to decipher since they had complicated interactions

with process sensitivity lists.

4-14

Conclusion:

So far all the changes made have made VHDL a better language. Better def-

initions, more consistent syntax and the removal of statements that added more

complications than capabilities improved the pedagogy of VHDL. Missing from the

available documentation is a thorough tutorial and programmer's manual. The re-

maining differences above have a positive impact on VHDL.

4.5.9 Generality The capability of VHDL to describe and model circuits

has been increased to include more types of circuits.

" Structural recursion is now allowed so that more and diverse circuits can be

defined.

" System level modeling of stacks, trees, queues, and other abstract data types

is now supported by IEEE-1076 since access types were added.

" Added signal kinds of bus and register make it more convenient to model

these kinds of hardware.

" The port drive requirements were relaxed to take a more global or network

view of the circuitry.

* Independent formal subelement associations allow elements of a composite for-

mal to be associated to separate objects.

" Global signals are allowed in packages to ease the design of power and ground

lines.

4-15

* Addition of the wait statement supports the general process modeling. Circuits

can be modeled more realistically and easily.

e The IEEE-1076 persistent process model is more general than that of Version

7.2 and is therefore able to model at the system level.

* The simulation model changed because of the addition of the wait statement

and file I/O allowing more circuits to be modeled.

* The component instantiation definition changed from a primitive to a one

defined in terms of block hierarchy.

* Structural recursion using the generate statement is allowed. Because of that,

more complex circuitry can be modeled.

* Since signals are allowed in subprograms, new attributes were added for use

in subprograms: 'Event, 'Active, 'Last.Event, and 'Last-Active. These should

only be used in sequential contexts.

* The simulation time can now be accessed through the predefined function Now.

This new function gives the ability to simulate mean-time-before-failure and

to model Random Access Memory (RAM) decay times.

Conclusion:

More circuits can now be modeled and simulated with less effort than before

making IEEE-1076 a more general hardware description language than Version 7.2.

All of the above differences have a positive impact on VHDL.

4-16

4.6 Conclusion

Based on the evaluation criteria, VHDL has been improved in all categories

(criteria). By far, most of the changes have been made to improve the definition of

the language. Based on the language criteria and the previous evaluation, IEEE-1076

is an excellent programming language for hardware descriptions. It meets all of the

criteria favorably, and should prove to be the best hardware description available.

Only time and extensive usage will determine if this conclusion is correct.

4.7 Summary

This chapter described the process of finding predefined programming language

criteria the steps followed to perform the evaluation. The details of the evaluation

were also presented in this chapter. The next chapter describes the. conversion and

extension of the Version 7.2 analyzer.

4-17

V. Analyzer Conversion-Extension

5.1 Introduction

This chapter details the overall design of the analyzer and the steps performed

to convert and extend the analyzer. This task was first described in Chapter 1 and

is further elaborated below. An example is also described to aid in understanding

the process used.

5.2 Revise and extend the current analyzer.

While performing the evaluation draft and determining what the actual lan-

guage differences were, the analyzer was revised and extended to conform to IEEE-

1076. The VIA had to be redefined for some of the changed constructs as well as the

constructs that extended the language. The updated VIA Data Model and Schema

are described in [Berk88]. The top-level design of the analyzer was not changed from

Bratton's analyzer and is shown in Figure 5.1.

The lexical analyzer which was formed using the UNIX utility lez [Lesk78] was

changed to accommodate the new reserved words of IEEE-1076. Reserved words

from Version 7.2 that are no longer used in IEEE-1076 were deleted.

The parser is still built using yacc [John78]. A large portion of the parser was

revised to incorporate the numerous changes of the new grammar.

5-1

VHDL Lexical Pre --- Semantic VAGn -I
Source Analyzer PasrAnalyzer VIGe VA

Message Operatio
Handler Table

Output
Listing

Figure 5.1. Analyzer Design [Brat87l

These changes to the syntax and semantics rippled into the semantic analyzer.

The task was made easier since the original design was modular. Many of the

modules were changed, and several were added. Great care was taken to preserve

the modularity of the design of the analyzer.

The operation table and message handler portions of the analyzer remain un-

changed by the new language. The operation table is made up of nodes of an Abstract

Syntax Tree (AST). These nodes contain the behavioral portion of the VHDL source

5-2

code [Brat87]. The message handler section writes messages to the listing output.

Messages include fatal, warning, error and "IMP" (not implemented) types.

The symbol table was changed slightly to correspond to the structural changes

made to the language. Changes made to the symbol table include those to handle

the new structures of subprogram, and the label entry for blocks (to implement the

new definition of component instantiation).

The VIA generator changed mostly due to the fact that subprograms are no

longer considered design units. A separate category equal to units and objects was

created to handle the new definitions of subprograms. The VIA definition was mod-

ified and the VIA generator was also changed to match.

Adding language extensions required modifications to the VIA, its generator

and the semantic routines once the entire language grammar was incorporated in the

the lexical analyzer and the parser. The methods of implementing the changes and

extensions are detailed below.

5.3 Conversion-Extension Steps

The following steps describe how the conversion-extension was done:

The first step that was performed was to change the lexical analyzer to rec-

ognize and accept all of IEEE-1076. The lexical analyzer was built using the UNIX

utility lex [Lesk78]. The input file to be processed by Iex maps sequences of characters

to identifiers and literals. The user defines specific identifiers called reserved words

5-3

(defined in the IEEE-1076 Language Reference Manual) so that character sequences

are recognized as such and cannot be used as variable names. The utility lex gener-

ates wlex a C routine from the user defined fie to become the lexical analyzer. To

perform the lexical analyzer conversion task, two compound delimiters were deleted,

and several new reserved words were added while several previous reserved words

that are no longer in use were deleted. This procedure was performed only once,

and the resulting lexical analyzer was tested to ensure correctness.

The following steps, which are similar to Bratton's implementation [Brat87:4.7],

were performed in an iterative fashion using the spiral model described in Chapter

2. Each iteration corresponds to a spiral cycle.

1. Determine the construct to change or extend.

2. Determine which specific validation test cases to use. If none are available,

create them.

3. Determine the need for a change or extension to the VIA.

4. Determine if changes are needed to VIA producing code. Design, code and test

the changes if necessary.

5. Determine what changes need to be made to the yacc file including error re-

covery.

6. Determine the results of the yacc value stack upon completion of parsing.

5-4

7. Determine and implement semantic actions that need to occur during the pars-

ing function.

8. Validate construct conversion-extension with both correct and incorrect test

cases.

9. Notify the simulator designer [Pomp88] upon successful testing.

As stated earlier in the thesis, the spiral model was chosen because risks are

identified upfront, the model was flexible encompassing both software maintenance

and new development, and most importantly, problems and errors are detected early.

This ensured that each change was implemented correctly before starting the next.

5.4 Conversion Example

To better explain each of the above steps, an example will be shown.

1. Determine the construct to change. The construct chosen for this example is

subprograms. This construct required changes to the VIA as well as the yacc

file and semantic actions.

2. Determine validation test cases. Several test cases were created to show the

correct implementation and several were created to show that the implementa-

tion detected incorrect input. This was done in advance of the implementation

to ensure test cases were available when the implementation was ready for

testing and to help understand the changes made to the construct.

6, 5-5 .

3. Determine if there needs to be a change or extension to VIA. The VIA already

handled subprogram bodies but IEEE-1076 has redefined the role of the sub-

program. They are no longer design units so that they had to be removed

from that category of VIA. Subprograms now have separate declarations and

bodies (to be more Ada-like and to enhance separate compilation) so the VIA

must reflect that also. The VIA was restructured to provide a category sub-

program for the four separate entries: procedure specification (procspec), pro-

cedure body (procbody), function specification (funcspec), and function body

(funcbody). (See Appendix B for details.) Since subprograms are structural in

nature these are all symbol table entries.

4. Determine if changes are needed to the VI4 producing code. Design, code, and

test necessary changes. Since the VIA itself was restructured for this change,

the code producing the VIA was modified. A new module was also added to

detect the subprogram category and the four subcategories. This module was

designed, coded and then tested.

5. Determine what changes need to be made to the yacc file including error recov-

cry. In order to do this, the Backus Naur Form (BNF) of the grammar needs

close scrutiny. The BNF for the Version 7.2 definition is shown in Figure 5.2

and the BNF for the IEEE-1076 definition is shown in Figure 5.3.

From these two figures, it can be seen that there doesn't appear to be a large

difference between the respective BNF definitions. The main difference is how

5-6(J

subprograrndeclaration
subprograimspecification IS subprogram-body;,

subprogram-.specification:=
PROCEDURE identifier [(parameter-interfacelist)]

FUNCTION identifier [(parameter-interfaceiist)]
RETURN tv ie-mark

subprogramhbodv-,
subprogram-dceciarative-part
BEGIN
sequence-ofstatenients
END [qlbprogram-sim plenamel

Figure 5.2. Verlision 7.2 Subprogram BNF [Iiite851

sti bprograni declarat 1on
* suhprograinspecificatioii:

sti)Irogransipecificat'orI
PROCEDURE designator [(forinal-pararneterlist)]
FU.NCTiO.N designator [(formal-parameteriJist))

* RETURN typernark

I~l In gri 2lsj)cl tira t loll I

B lb)~~aH.d'Li F, C; IN

1i~lre *.3.11:11K-ItJ~ Sipi JmINT F 1ILLL

the subprogram-specification is defined and used. The Version 7.2 yacc file

which was based on the BNF definition is shown in Figure 5.4.

Tokens passed by lex are upper case names (such as PROCEDURE and FUNC-

TION), and productions are lower and mixed case names (such as subpro-

gram-specification and .procedure_parameter-1ist.') The braces in yacc denote

an action area and contain statements which are executed if the parser accepts

the preceeding production. The symbol "$$" represents the yacc stack value

for the current action statement and the symbols "$1", 12",%. .. etc, represent

the yacc stack values for production 1, production 2. . . etc, respectively. The

yacc code was changed to reflect the changes and is shown in Figure 5.5.

6. Determine the results of the yacc value stack upon completion of parsing. Be-

fore any actions were added, the yacc value stack for subprogram.body was as

follows:

(1) the pointer to symbol table entry for subprogramspecificat ion

(2) the token IS

(3) the pointer to the symbol table entry for subprogram..declarative-part

(4) the token BEGIN S

(5) the pointer to the Abstract Syntax Tree (AST) node for first node of
sequence-of-state rnents

(6) the token END

0 (7) the pointer to the symbol table entry for designator.

(8) the token Semicolon

1yacc allows the underscore and period to be used in non-terminals. The naming conventions

described by Bratton (Bratton. 1987:4.9) are continued in this project and reiterated for continuity.
0 An optional non-terminal is denoted by a period on either side, a non-terminal that could be

repeated one or more times is denoted by two periods on either side, and a list is defined by three
beginning periods and two trailing periods.

I 5-8

subprograzn.declaration
*procedure~cclaration
Ifunction-declaration

proceduredeclaration
-PROCEDURE
Identifier

f
88 = s-niakeunit(U-PROC, 82);

.procedure-parameterist.
is

a.,bpusho;
s-setreturn(NUJLL.SYMBOL);

subprograxn.Aeclarative.part
BEGIN
sequence -of-statemnents
END-ERR
.simrple-naxne.
Semicolon-ERR

8$ = procedure-declaration(83,$4,$9,811);
s..bpopo;

functionideciaration
FUNCTION

Identifier

88=s-makeunit(UYFUNC,$2);

.functioriparaxneter~list.
RETURN
typeinark
is

s..bpusho;
s.,setreturn($6);

subprogiram-declarative.part
BEGIN
sequence.of-statemleflts
END-ERR
.simple.nanie.
Serrucolon-ERR

88=functjon-declaration($3,$4,S6,
$9,811,$13);

s-bpopo;
"~etretun(NULL.SYMBOL);

Figure 5.4. Version 7.2 yacc file

5-9

subprogram-declaration
:subprogramnspecification

Semicolon..ERR

a..return(NULL-SYMBOL);

subprogram.specification
PROCEDURE

designator

SS = s..make-subprgxnspec(SP-PROCSPEC,$2);

.procedure-paraxueterlist.

S$ = procedurespecification($3,S4);

FUNCTION
designator

5S = s..nake-subprgmapec(SP..FUNCSPEC,$2);
I

.function.paranieterlist.
RETURN
type-mark

f.
SS = fuxlction..specification(83,$4,$6);

s..return($6);

subprogram-body
:subprogram-.specification

is

s..bpusho;

subprogram-Aeclarativepart
BEGIN
sequence-of-statements
END-ERR
.designator.
Semicolon-ERR

$$ = subprogram..body($1,84,$6,98);
s-bpopo;
s..setreturn(NULL-SYMBOL);

Figure 5.5. IEEE- 1076 yacc file

5-10

For nonterminals, the type is determined by what is returned by the user-

defined semantic actions. The integer value of the terminals (tokens) are de-

termined by a list of terminal symbols supplied to yacc.

40
7. Determine and implement semantic actions that need to occur during the pars-

ing function. The previous yacc file example already had the semantic actions

* placed in it so they will be explained. Several semantic actions must take place

during this analysis. First, a separate declaration region is created by s.bpush(

for variables local to the subprogram. The task that subprogram.body performs

is to link the pointers of the symbol table entries and ASTs (operation table

entries) to the symbol table entry created by the subprogram-specification when

it is parsed. The action s.bpop() clears the declaration area and the s.setreturn

sets the return flag to NULL-SYMBOL, which is the default. It is only set to

a type when a FUNCTION is being parsed.

8. Validate construct conversion-extension with both correct and incorrect test

cases. The analyzer was tested using correct and incorrect test cases as well

as a regression test.

9. Notify the simulator designer upon successful testing. When the analyzer had

IL passed its testing, the simulator designer was notified.

5-11

ti

.. ...j I I II |il Ii Ii mu mi . . • -

5.5 Summary

This chapter presented the overall design and the detailed methods used to

implement the design of the analyzer. The steps used to perform the conversion-

extension of the analyzer were discussed. An example was shown to help explain the

method used to convert the analyzer. Testing of the analyzer to show conformance

to IEEE-1076 is presented in the next chapter.

5-12

VI. Testing and Analysis

6.1 Introduction

This chapter describes the testing that the analyzer underwent and the test

results analysis. It also shows how well the requirements were met that were discussed

in Chapter 1. Since the requirements paralleled Bratton's effort [Brat87], the testing

was also along the same lines. This provided a convenient comparison and helped

to determine if the results were similar. Even though the scope of this project did

not include production quality, an attempt was made to maintain the quality already

built into the analyzer.

6.2 Testing Tasks

The following elaborate the remaining tasks of Chapter 1, those pertaining to

testing and documenting.

6.2.1 Develop or obtain a validation test suite for the analyzer. To validate

the analyzer for syntactic and semantic conformance, the Intermetrics converted

Version 7.2 test suite mentioned in Chapter 1 was used. Additional test cases were

built to cover the added construct syntax and semantics. Designs for some TTL

circuits written in Version 7.2 were converted to IEEE-1076 to partially form a

pe:.formance test suite. Other circuit designs and test cases were built as needed.

6-1

6.2.2 Validate the changes and extensions. After each set of changes or an

extension was implemented, the analyzer was tested using regression testing tech-

niques. This is the suggested method for testing compilers [Aho86:321]. The test

suite was run after each implementation to ensure no constructs were inadvertently

changed. The results of this testing are found in this chapter and in Chapter 7.

6.2.3 Perform analyzer-simulator integration tests. Once a version or imple-

mentation was validated it still needed to be integrated with the AVE simulator. The

test cases for this integration testing were the tests that made up the performance

test suite and the converted TTL circuits described earlier. This testing showed how

well the analyzer performed with the other tools of the AVE as well as such items

as resource usage and portability. The results are documented in Chapter 5.

6.2.4 Document the results. This thesis contains the major design decisions,

the details of the implementation and the test results for this part of the project.

6.3 Requirements

The requirements for the analyzer were set forth in Chapter 1. This section

will briefly review these requirements below.

Generalization

1. Use the common tools of UNIX

2. Be portable

6-2

-. 4

3. Handle both correct and incorrect input

Validation/Reliability

4. Prove constructs were correctly implemented

Maintainability

S. Be well documented

6. Be designed in a structural/modular manner

Economical

7. Conserve computer resources (memory and time)

AVE System Integration

8. Maintain and improve "end-to-end" capability of the analyzer-simulator system

6.4 How the Requirements Were Met

Several types of testing were employed to determine if the requirements were

met: conformance testing, performance testing, portability testing, and system in-

tegration testing.

Not all the requirements needed to be tested; the maintainability requirement

was simply desk checked to ensure modularity.

6-3

0 -Wmdf

Conformance testing was used to test requirements 3 and 4, performance test-

ing was used to determine time and memory usage (requirement 7), portability test-

ing was used to show how requirements 1 and 2 were met, and system integration

tests were used to show how well the analyzer-simulator system was integrated.

6.5 Testing Process

Each form of testing will be described with an example shown when needed

for clarification.

Conformance testing showed how well the analyzer conformed to or met the

IEEE-1076 standard. Two types of tests were run. The first type (called short tests)

checked if the analyzer could analyze correct input and output the correct VIA. The

second type (called error tests) was how well the analyzer picked out deliberate errors

in the input source code and how it handled the errors. The correctly coded input

tested both the syntax and semantics of the language.

Since the analyzer was converted to handle all IEEE-1076, no syntax errors

were allowed to pass without correction either to the analyzer or to the test case if

an error was found there and confirmed by consultation with the IEEE-1076 LRM.

Semantic errors were allowed for non-implemented constructs.

To continue Chapter 4's implementation example, the following is a test to

check the syntax in its simplest form. To test for a subprogram declaration:

6-4

entity Al is
procedure one;
function two return boolean;

end AI;

To check subprogram bodies the following architecture was appended to the

above entity:

architecture test of Al is

procedure one is
begin
end one;

function two return boolean is
variable I : boolean;

begin
I :- TRUE;

Return I;
end two;
begin

end test;

The above tests would also check the semantic requirement of an entity name

being declared and analyzed before the architecture body. The results of the analysis

(when the verbose option is employed) is shown below.

6-5

AFIT VHDL Analyzer Revision: 1076.- 3.1
[1] entity Al is
[2] procedure one;
[3) function two return boolean;

[4) end Al;
1s]

[6] architecture test of Al is

[7)
[8) procedure one is

[9) begin
[10) end one;

[12) function two return boolean is
[13) variable I : boolean;
[14) begin
[15) I := TRUE;
[16) return I;
[17) end two;
[18) begin
[19) end test;
[20)
[21)
Number of errors detected: 0
Generating VIA file.. .done
VHDL Analysis complete.

The results of the conformance testing are found in Table 6.1.

Table 6.1. Results of Test Suite Testing

Result Short Error Total

Pass 127 (56%) 217 (67%) 344 (61%)
Fail 18 (8%) 33 (10%) 51 (09%)
Not Impl 81 (36%) 73 (23%) 154 (28%)
Total 226 409 549

The test suite actually contained 710 test cases. However, 161 of these test

cases were unable to be used because of errors such as a package body without

6-6

its corresponding package declaration. These test cases were not analyzable. The

maintainer of the test suite has been notified.

For portability testing the analyzer files were moved to a SUN Work Station

operating under UNIX BSD Version 4.2. The analyzer was developed on an ELXSI

6400 using UNIX BSD Version 4.2 without using any system specific calls. The

analyzer was completely recompiled on the Sun and another ELXSI operating under

UNIX BSD Version 4.3. It was then tested using a datafow and a procedural design

capturing the time to run using the UNIX Time command. The results are found

in Table 6.2. The computers were lightly loaded at the time of testing.

Table 6.2. Portability Tests

Design Type Processor
SUN ELXSI

Dataflow 0.231 0.12
(0.08)2 (0.04)

Procedural 0.24 0.11
(0.05) (0.03)

1. Average CPU seconds
2. Std dev

Performance testing was performed in concert with the portability testing. The

UNIX time command was used to determine the time to run certain designs on each

of the computers. To determine how much memory was used, the time command

again was used. Less than 600k bytes were needed to analyze each test case in the

validation test suite. Also included in the performance testing was the size of the

6-7

VIA file when compared to the number of lines of source input. This was found

simply by dividing the size of the VIA file (bytes) by the number of lines of source

VHDL (comments were not counted). The average VIA file from the validation test

suite was 2855 bytes and the average lines of code from each input file was 28 lines.

The VIA fie included the overhead of package Standard each time since the analyzer

does not incorporate a design library at this time.

Integration testing was performed by using several circuits that were meaning-

ful. Each circuit was analyzed and simulated to show that indeed the AVE tools

were integrated.

6.6 Summary

This chapter described the types of testing the analyzer was subjected to and

the results of those test. The final chapter, Chapter T show the conclusions of the

project and future recommended research.

6-8

VII. Conclusions and Recommendations

1.1 Itroduction

This thesis p~resented an evaluation of the changes and additions to V'ersion

7.2 that form-ed IE"EE- 1076. Ihis lproje~ct also converted and extendled a current

Version 7.2 subset anialyzer. Future research, which is recommended below, will

furt her enhanMce thle cuirrent. anal vzcr. thle AVEL. and~ the knowledge of the VII DL

larnziIat~ tself.

iiConclusionls

7. 2. 1 Evaluationi The evaluation of tie(two versions of VII DL p~roved(to b~e

valu a ble. 11 niot only aided lii underst audi ng the differences bet weeni the languages.

it ll- also ~(1'(lc in-j'lits Into the subtle dlifferenices that are not intuitively obviouis.

I is-s ~~WhiI ~'Waisef w hen perfornuing the actual conversion of lhe anailyzer.

0I I lie evaluiidtioll nreal~ds that VIII)L hats been significantly Impjroved lin its cur-

n-lit~~ Ori LE tTt;. \1lost iiolicealv the lai~iaehas heroine better tleliiiedit s

h" Ii 11 1ltl 1 .)k*ll~ 11(o tl e1 - (Il,(o c t lI M

before. The language remains high-level enough to preclude being bound to any one

computer architecture. The language remains very modular and is quite extensible

with subprogram and operator overloading. VHDL is also more geared toward team

design than before.

IEEE-1076 improved VHDL in all criteria used in the evaluation.

7.2.2 Conversion/Extension The conversion and extension of the subset

analyzer provided a more robust analyzer than the one at the beginning of the

project. Adding the wait statement and component instantiation allowed greater 0

simulation capabilities for "end-to-end" results (analyzer-simulator)

Conversion of the analyzer, however, was not as trivial as first thought. Pro-

viding separate declarations and bodies for subprograms and packages proved to be

the first major hurdle. Several new ambiguities were introduced in IEEE-1076 since

part of the grammar is context dependent, causing many reduce/reduce conflicts

which had to be resolved in the yacc parser.

The results of the testing described in Chapter 5 showed that the following

requirements were met.

1. The Analyzer runs on different computers with different %ersions of UNIX
4 installed. 0

2. The Analyzer was tested thoroughly.

3. The Analyzer maintains its modularity and is well- documented.

4. The Analyzer is conservative in it use of memory and time.

5. The Analyzer was tested in an integrated environment with the AVE Simulator.

7-2

.. .. *, .,0u -,. a m mi al l lu il i m

7.3 Recommendations for Future Research

7.3.1 Continue to Study the Language. Since IEEE-1076 is still very new and

few tools are available to use it, not much is really known about how much better it

is in practice than Version 7.2. Studying certain circuits and programming them in

both Version 7.2 and IEEE-1076 would be beneficial to other users.

7.3.2 Complete Implementation of the Language. The analyzer does not yet

implement the whole language of IEEE-1076. It would be beneficial for further

research into the different ways of implementation of IEEE-1076 constructs into such

areas as memory and speed optimization. Once the entire language is implemented

and validated, this would be an area for yet further study.

7.3.3 Design Library Implementation. The AVE currently does not support

a design library. All structures must be in the source file and analyzed together.

To provide efficient use of computing resources, separate compilation and a library

manager are needed to support team development for large circuits. Resources can

be conserved by analyzing only those parts or packages that have changed.

7.3.4 Determine a Suitable Subset of VtIDL. Steps are now being taken to

define a subset of VHDL (Weiss, 1988: 51) since some vendors are having great diffi-

culty interfacing to the whole language. Some of the problems with defining subsets

are what to include and how to control the proliferation of subsets. Future research

7-3

might try to define specific subsets and justify why those particular constructs should

be grouped together. Transportability between subsets should also be addressed.

7.4 Summary

The evaluation of the two language versions showed that IEEE- 1076 is an

improvement over Version 7.2 according to the criteria used in the evaluation. This

gives the VHDL designer more capabilities and a language that is easier to use and

understand. The VHDL analyzer produced during this research provided a basis

for understanding VHDL-1076 and a tool that is suitable for use on UNIX-based

computers. Any benefit this ongoing research provides to the academic community

and industry benefits the Air Force.

7-4

Bibliography

[Aho86 Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Reading, MA: Addison-Wesley Publishing Co.,
1986.

[Arms88] Armstrong, J.R. "Chip-Level Modeling With HDLs," IEEE Design &
Test of Computers, 5 (1): 8-18 (February 1988).

(ASD83] Aeronautical Systems Division (ASD), Air Force Systems Command.
VHSIC Hardware Description Language (VHDL) Program. Solicitation
No. F33615-83-R-1003. Wright- Patterson AFB OH, 30 March 1983.

[Aylo86] Aylor, J. H. and others. "VHDL-Feature Description and Analysis," IEEE
Design & Test of Computers, 3 (2): 17-27 (April 1986).

[Berk88] Berk, Capt Kevin J. and Maj Joseph W. DeGroat. VHDL Intermediate
Access Data Model and Schema. AFIT-TR-EN-88-OV1. Air Force Insti-
tute of Technology (AU), Wright-Patterson AFB, OH, November 1988.

[Boeh88] Boehm, Barry. "A Spiral Model of Software Development and Enhance-
ment", Computer, 10 (5): 61-72 (May 1988).

[Brat87] Bratton, Capt Randolph M. A Production-Quality UNIX Very High Speed
Integrated Circuit (VHSIC) Hardware Description Language (VHDL)
Subset Analyzer. MS Thesis AFIT/GCS/MA/87D-1. School of Engineer-
ing, Air Force Institute of Technology (AU), Wright- Patterson, AFB OH,
December 1987.

[CLSI87] CAD Language Systems, Inc. (CLSI). VHDL Language Refinement Ra-
tionale. Rockville MD, August 1987.

[Cart88I Carter, Dr Harold W. Telephone interview. Cincinnati OH, 24 May 1988.

[Cart87] Carter, LtCol Harold W. and others. 1986 Research Report: AFIT
VHDL/DB/DBMS Research. AFIT-ENC-TR-87-01. Air Force Institute

of Technclogy (AU), Wright-Patterson AFB OH, January 1987.

[DeGr88] DeGroat, J. W. and others. "The AFIT VHDL Environment," Proceedings
of the IEEE 1988 Frontiers in Education Conference. p$ 324. New York:
IEEE Press, 1988.

[Deit84] Deitel, Harvey M. An Introduction to Operating Systems. Reading MA:
Addison-Wesley Publishing Company 1984.

[DoD88] Department of Defense. Military Standard Defense System Software De-
velopment. DOD-STD-2167A. Washington: Department of Defense, 26
February 1988.

[Dewe86l Dewey, Allen and Anthony Gadient. "VHDL Motivation," IEEE Design
& Test of Computers, 3 (2): 12-16 (April 1986).

BIB-I

[Frau86] Frauenfelder, Capt Deborah J. An Implementation of a Language An-
alyzer for the Very High Speed Integrated Circuit Hardware Description
Language. MS Thesis AFIT/GCE/MA/86D-1. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, Decem-
ber 1986 (AD-A178648).

[Gilm86] Gilman, Alfred S. "VHDL-The Designer Environment," IEEE Design &-
Test of Computers, 3 (2): 42-47 (April 1986).

[IEEE88] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE Std
1076-1987, The Institute of Electrical and Electronics Engineers, Inc.,
New York NY, 1988.

[Int84a] Intermetrics, Inc. VHDL User's Manual: Volume I - Usage Scenarios.
Contract F33615-83-C-1003. Bethesda MD, 30 July 1984.

(Int84b] _. VHDL Analyzer Test Plan. Contract F33615-83-C-1003. Bethesda
MD, 30 July 1984.

[Inte85] _ . VHDL Language Reference Manual Version 7.2. Contract F33615-
83-C-1003. Bethesda MD, 1 August 1985.

[John78 Johnson, S. C. "Yacc: Yet Another Compiler-Compiler," Murray Hill NJ:
AT&T Bell Laboratories, 31 July 1978.

[Kern78] Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Lan-
guage. Englewood Cliffs NJ: Prentice- Hall, Inc., 1978.

[Kern88] Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Lan-
guage (Second Edition). Englewood Cliffs NJ: Prentice-Hall, Inc., 1988.

[Knap84] Knapp, David W. and Alice C. Parker. A Data Structure For VLSI
Synthesis and Verification. Contract DAAG29-80-K-0083. Department of
Electrical Engineering- Systems, University of Southern California, Los
Angeles CA, 8 May 1984.

[Lesk78] Lesk, M. E. and E. Schmidt. "Lex-A Lexical Analyzer Generator," Mur-
ray Hill, NY: Bell Laboratories, 31 July 1978.

[Lips86] Lipsett, Roger and others. "VHDL-The Language," IEEE Design & Test
of Computers, 3 (2): 28-41 (April 1986).

[Lowe86I Lowenstein, Al and Greg Winter. "VHDL's Impact on Test," IEEE Design
& Test of Computers, 3 (2): 48-53 (April 1986).

[Mear88] Mears, L.A. and Steven P1 Levitan. "An Integrated Capture and Simula-
tion Tool for Digital Designs," Spring 1988 DARPA Microsystems Design
and Prototyping Contractors Meeting. April 1988.

(Nash86] Nash, J.D. and L. F. Saunders. "VHDL Critique," IEEE Design & Test
of Computers, 3 (2): 54-65 (April 1986).

BIB-2

[Pomp88] Pompilio, Capt Douglas. UNIX-Based IEEE-1076 VHDL Simulator. MS
Thesis, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1988.

[Pres87] Pressman, Roger S. Software Engineering: A Practitioner's Approach.
(Second Edition), New York: McGraw-Hill Book Company, 1987.

[Radk88] Radke, Charles. "A D&T Roundtable Design Automation Standards,"
IEEE Design & Test of Computers, 5 (1): 48-55 (February 1988).

[Schr85] Schreiner, A.V., and H.G. Friedman, Jr. Introduction to Compiler Con-
struction with UNIX. Englewood Cliffs: Prentice-Hall, Inc., 1985.

[STEE78] -STEELMAN: Requirements for High Order Computer Programming
Languages," Department of Defense, Washington, D.C., 1978.

[Tuck86] Tucker, Allen B. Programming Languages (Second Edition). New York:
McGraw-Hill Book Company, 1986.

[Waxm86] Waxman, Ron. "The VHSIC Hardware Description Language - A Glimpse
of the Future," IEEE Design & Test of Computers, 3 (2): 10-11 (April
1986).

[Weis88] Weiss, Ray. "VHDL Subsets for CAE," Electronic Engineering Times.
Issue 497: 51,62 (August 1, 1988).

BIB-3

Vita

Captain Kevin J. Berk was born o He

graduated from St. Joseph High School in 1973, and in the Fall of 1973, he enlisted in

the Air Force as a Special Electronics Technician. He was stationed in the Philippine

Islands and at Patrick AFB, Florida. Near the end of his enlistment, he received

an AFROTC scholarship and attended the University of Central Florida where he

pursued a Bachelor of Science in Physics. He was also selected as an AFROTC

distinguished graduate and commissioned in the Air Force. After his return to

active duty, he served as a project officer at the Shuttle Test Group at Vandenberg

AFB, California until he was selected for the Undergraduate Engineering Conversion

Program. In September 1982 he entered Michigan State University pursuing a second

Bac'helors degree in Electrical Engineering. After graduating with honors, he was

assigned to the Aeronautical Systems Division, Wright-Patterson AFB, Ohio where

he served as an Embedded Computer Resources Engineer. He entered the School of

Engineering, Air Force Institute of Technology, in June 1987 to purcue a Masters of

Science in Computer Engineering.

VITA- I

1NIICASSIFIED

S1CUNY CLASWICIATION OF THIS PAGiE3 Form Aoproved

REPORT DOCUMENTATION PAGE ON# 0o7 18

CLASSIFICATION lb. RESTRICTIVE MARKINGS

I& SECUIT CIASSIFICATION AUTHORITY 3. DI3$WAj~ iCM ae

2b. DEOCASSIFICATIONIDOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/GCE/ENG/88D-1

go. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 74. NAME OF MONITORING ORGANIZATION
O (f appkabl.)

School of Engineering AFIT/EMG

'. ADDRESS (Cty, State, and Z/PCod.) 7b. ADDRESS (City, State, and ZIP Co*.)

Air Force Institute of Technology
Vright-Patterson AFB OH 45433-6583

S& NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

AM ZATION (I apfble)

S. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Air Force Wright Aeronautical Laboratory PROGRAM PROJECT TASK IWORK UNIT

Wright Patterson APB 45433-6503 ELEMENT NO. NO. rNO CCESSION NO.

I1. TITLE (Inde Scwft Cn "ftion)
THE IMPACT OF IEEE-1076 ON VHDL (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)
Kevin J. Berk, B.S., Capt, USAF

134. TYPE OF REPORT 113b. TIME COVERED 14. DTE OF REPORT (Year, Month, Day) 15. PIAf COUNT
MSCE Thesis I FROM TO 1988 December

16. SUPPLEMENTARY NOTATION

0

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse f necenaty and identify by block number)

FIELD GROUP SUB-GROUP Computer Programs, Compilers, Programming Languages,

P] Computer Aided Design, VHDL, - (-

19. ABSTRACT (Continue on revere f necessary and identify by block number) /
.. C l .t 3%\ , , .'.

Thesis Chairman: Maj Joseph W. DeGroat the-

This paper describes the conversion and extension of the Air Force Institute of
Technology's (AFIT's) UNIX-based VHDL Analyzer. This task concentrated on converting the
current AFIT analyzer from VHDL Version 7.2 to IEEE Standard 1076-1987 and extending it
to include the vait statement and component instantiation as defined in IEEE Standard
1076-1987. An evaluation was also performed on the differences between Version 7.2 and
IEEE Standard 1076-1987 using nine predefined criteria that determine if a programming
language is good. The evaluation vas done to determine if IEEE Standard 1076-1987 was
indeed a better version of VHDL than its predecessor, Version 7.2. k(, , , /

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEDIUNUMITEO 03 SAME AS RPT. CQ DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Kevin J k. Captamn. USAF (513) 255-3030 AFIT/ENG

DO Form 1473, JUN 86 twwous edtiom are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

